url http://core.miserver.it.umich.edu/omeka-s/s/ire/item/4754 o:resource_class ire:JournalArticle ire:id 4J5PWYMF ire:class ire:JournalArticle ire:year 2019 ire:author Zheng, Guoguo Fancsali, Stephen Edward Ritter, Steven Berman, Susan ire:title Using Instruction-Embedded Formative Assessment to Predict State Summative Test Scores and Achievement Levels in Mathematics ire:issn 1929-7750 ire:doi 10.18608/jla.2019.62.11 ire:url https://learning-analytics.info/index.php/JLA/article/view/6131 Open Access Journal Webpage (Journal of Learning Analytics) ire:date 2019 ire:dateAdded 11/25/2022 15:38 ire:dateModified 11/25/2022 15:38 ire:dateAccessed 11/25/2022 15:38 ire:pages 153-174 ire:issue 2 ire:volume 6 ire:language en ire:rights Copyright (c) 2019 Journal of Learning Analytics ire:catalog learning-analytics.info ire:extra Number: 2 ire:attachFile C:\Users\huynh\Zotero\storage\4GZ44VYE\Zheng et al. - 2019 - Using Instruction-Embedded Formative Assessment to.pdf ire:status Published Text ire:genre Empirical ire:keywords predictive modeling intelligent tutorial systems formative assessment mathematics education accountability, assessment ire:resourceType Research/Scholarly Media ire:inPublication Journal of Learning Analytics ire:apa Zheng, G., Fancsali, S. E., Ritter, S., & Berman, S. (2019). Using Instruction-Embedded Formative Assessment to Predict State Summative Test Scores and Achievement Levels in Mathematics. Journal of Learning Analytics, 6(2), Article 2. https://doi.org/10.18608/jla.2019.62.11 --