url http://core.miserver.it.umich.edu/omeka-s/s/ire/item/4734 o:resource_class ire:ConferencePaper ire:id PUIE5MQD ire:class ire:ConferencePaper ire:year 2014 ire:author Piety, Philip J. Hickey, Daniel T. Bishop, M. J. ire:title Educational Data Sciences: Framing Emergent Practices for Analytics of Learning, Organizations, and Systems ire:isbn 978-1-4503-2664-3 ire:doi https://doi.org/10.1145/2567574.2567582 10.1145/2567574.2567582 ire:url https://doi.org/10.1145/2567574.2567582 Official Publisher's Webpage (ACM Digital Library) https://www.researchgate.net/publication/262242184_Educational_data_sciences_-_Framing_emergent_practices_for_analytics_of_learning_organizations_and_systems Full-text PDF Shared by Author (ResearchGate) ire:date 2014 ire:dateAdded 11/25/2022 1:21 ire:dateModified 11/25/2022 1:21 ire:dateAccessed 11/24/2022 ire:pages 193–202 ire:shortTitle Educational data sciences ire:series LAK '14 ire:publisher Association for Computing Machinery ire:place New York, NY, USA ire:catalog ACM Digital Library ire:status Published Text ire:genre Theoretical ire:peer No ire:keywords analytic approaches big data data-driven decisions educational data mining educational data science learner analytics learning analytics methods theories and theoretical concepts for understanding learning tools for sense-making in learning analytics ire:resourceType Research/Scholarly Media ire:inPublication Proceedings of the Fourth International Conference on Learning Analytics And Knowledge ire:apa Piety, P. J., Hickey, D. T., & Bishop, M. J. (2014). Educational data sciences: Framing emergent practices for analytics of learning, organizations, and systems. Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, 193–202. https://doi.org/10.1145/2567574.2567582 ire:openAccess Yes --